本文介绍了我们拦截更快的入侵者无人机的方法,这是受MBZIRC 2020挑战1.的启发1.通过利用对入侵者轨迹的形状的先验知识,我们可以计算拦截点。目标跟踪基于Yolov3微型卷积神经网络的图像处理,并结合使用饰品安装的ZED ZED迷你立体声摄像机的深度计算。我们使用摄像头的RGB和深度数据,设计降噪的直方图过滤器来提取目标的3D位置。获得目标位置的3D测量值用于计算图八形轨迹的位置,方向和大小,我们使用Bernoulli Lemniscate近似。一旦近似被认为是足够精确的,可以通过观察值和估计之间的距离来测量,我们将计算一个拦截点,以将拦截器无人机直接放在入侵者的路径上。根据MBZIRC竞争期间收集的经验,我们的方法已在模拟和现场实验中得到了验证。我们的结果证实,我们已经开发了一个有效的视觉感知模块,该模块可以提取以足以支持拦截计划的精确性来描述入侵者无人机运动的信息。在大多数模拟遭遇中,我们可以跟踪和拦截比拦截器快30%的目标。在非结构化环境中的相应测试产生了12个成功结果中的9个。
translated by 谷歌翻译
图表比较涉及识别图之间的相似性和异化。主要障碍是图形的未知对准,以及缺乏准确和廉价的比较度量。在这项工作中,我们引入过滤器图距离。它是一种基于最佳的传输距离,其通过滤波图信号的概率分布驱动图表比较。这产生了高度灵活的距离,能够在观察到的图表中优先考虑不同的光谱信息,为比较度量提供广泛的选择。我们通过计算图表置换来解决图表对齐问题,该置换最小化了我们的新滤波器距离,这隐含地解决了曲线图比较问题。然后,我们提出了一种新的近似成本函数,这些函数避免了曲线图比较固有的许多计算困难,并且允许利用镜面梯度下降等快速算法,而不会严重牺牲性能。我们终于提出了一种衍生自镜面梯度下降的随机版本的新型算法,其适应对准问题的非凸性,在性能准确性和速度之间提供良好的折衷。图表对准和分类的实验表明,通过滤波图距离所获得的灵活性可以对性能产生显着影响,而近似成本提供的速度差异使得适用于实际设置的框架。
translated by 谷歌翻译